Search results for "many-body theory"
showing 10 items of 21 documents
Many-particle Green's functions
2013
Correlating Schiff Moments in the Light Actinides with Octupole Moments
2018
We show that the measured intrinsic octupole moments of $^{220}$Rn, $^{224}$Ra, and $^{226}$Ra constrain the intrinsic Schiff moments of $^{225}$Ra$^{221}$Rn, $^{223}$Rn, $^{223}$Fr, $^{225}$Ra, and $^{229}$Pa. The result is a dramatically reduced uncertainty in intrinsic Schiff moments. Direct measurements of octupole moments in odd nuclei will reduce the uncertainty even more. The only significant source of nuclear-physics error in the laboratory Schiff moments will then be the intrinsic matrix elements of the time-reversal non-invariant interaction produced by CP-violating fundamental physics. Those matrix elements are also correlated with octupole moments, but with a larger systematic u…
Asymptotic normalization coefficients and continuum coupling in mirror nuclei
2012
Background: An asymptotic normalization coefficient (ANC) characterizes the asymptotic form of a one-nucleon overlap integral required for description of nucleon-removal reactions. Purpose: We investigate the impact of the particle continuum on proton and neutron ANCs for mirror systems from $p$- and $sd$-shell regions. Method: We use the real-energy and complex-energy continuum shell model approaches. Results: We studied the general structure of the single-particle ANCs as a function of the binding energy and orbital angular momentum. We computed ANCs in mirror nuclei for different physical situations, including capture reactions to weakly-bound and unbound states. Conclusions: We demonstr…
The kinetics of defect accumulation under irradiation: many-particle effects
1993
The kinetics of Frenkel defect accumulation under permanent particle source (irradiation) is discussed with special emphasis on many-particle effects. Defect accumulation is restricted by their diffusion and annihilation, A + B → 0, if the relative distance is less than the critical distance r0. A novel formalism of many-point particle densities based on Kirkwood's superposition approximation is developed to take into account aggregation of similar defects (A−A, B−B). The dependence of the saturation concentration after a prolonged irradiation upon spatial dimension ( = 1, 2, 3), defect mobility and the initial correlation within geminate pairs is analyzed. It is shown that the defect conce…
Phonon superradiance and phonon laser effect in nanomagnets
2004
We show that the theory of spin-phonon processes in paramagnetic solids must take into account the coherent generation of phonons by the magnetic centers. This effect should drastically enhance spin-phonon rates in nanoscale paramagnets and in crystals of molecular nanomagnets.
Fractional Periodicity of Persistent Currents: A Signature of Broken Internal Symmetry
2003
We show from the symmetries of the many body Hamiltonian, cast into the form of the Heisenberg (spin) Hamiltonian, that the fractional periodicities of persistent currents are due to the breakdown of internal symmetry and the spin Hamiltonian holds the explanation to this transition. Numerical diagonalizations are performed to show this explicitely. Persistent currents therefore, provide an easy way to experimentally verify broken internal symmetry in electronic systems.
Many-body Landau-Zener effect at fast sweep
2005
The asymptotic staying probability P in the Landau-Zener effect with interaction is analytically investigated at fast sweep, epsilon = pi Delta^2/(2 hbar v) << 1. We have rigorously calculated the value of I_0 in the expansion P =~ 1 - epsilon + epsilon^2/2 + epsilon^2 I_0 for arbitrary couplings and relative resonance shifts of individual tunneling particles. The results essentially differ from those of the mean-field approximation. It is shown that strong long-range interactions such as dipole-dipole interaction (DDI) generate huge values of I_0 because flip of one particle strongly influences many others. However, in the presence of strong static disorder making resonance for indiv…
Linear response theory: many-body formulation
2013
MBPT for the Green's function
2013
The generalized Kadanoff-Baym ansatz with initial correlations
2018
Within the non-equilibrium Green's function (NEGF) formalism, the Generalized Kadanoff-Baym Ansatz (GKBA) has stood out as a computationally cheap method to investigate the dynamics of interacting quantum systems driven out of equilibrium. Current implementations of the NEGF--GKBA, however, suffer from a drawback: real-time simulations require {\em noncorrelated} states as initial states. Consequently, initial correlations must be built up through an adiabatic switching of the interaction before turning on any external field, a procedure that can be numerically highly expensive. In this work, we extend the NEGF--GKBA to allow for {\em correlated} states as initial states. Our scheme makes i…